
PREFACE

Traditional computer systems are built around the solitary central processor|an

omnipotent agent that executes instructions and commands peripheral devices.

Traditional programs reect this monolithic orientation; programs describe a sin-

gle instruction stream, with instructions evaluated sequentially. It is now possible

to build systems with many active computing agents|independent processors

that execute concurrently but can nevertheless communicate. We need to develop

new software technology to control such systems. In this book we explore some

of the tools and techniques that have been proposed for programming systems

composed of many independent agents and for focusing these systems on single

tasks. We give the name coordinated computing to this study of organizing multi-

ple, independent, and loosely connected computing systems to perform coherent

problem solving.

Historical Perspective

The historical patterns of use and cost of computing systems have changed dra-

matically. Early computers were extremely expensive, physically large, and com-

putationally slow. They were designed for use by a single programmer at a time,

who had the entire machine devoted to his or her use. Such systems did not have

an operating system to protect against malice or mistake. Instead, the user's

program controlled the computer directly. Since computers were expensive, they

were shared | one user at a time. Users \signed up" to reserve time on the

computer.

Clearer understanding of computation, cheaper machines, and a desire for

improved system utilization led to the batch/stream computer. Here the com-

puter scheduled its work, running each user's task in turn. Typically, a program-

mer submitted a program on a deck of punch cards in the morning and returned

later that afternoon for the output. Better systems provided two or three runs

a day. Primitive operating systems were developed primarily to order the batch

stream and to arrange for each program's tapes. In these systems, security was

limited to ensuring that programs used the correct �les and tapes. Since only

xi



xii preface

a single program was running at a time, programs did not interfere with each

other's address spaces.

Interactive timesharing systems have replaced batch systems, at least in

those environments devoted to program development. A timesharing computer

is a complex system. Instead of sequencing the tasks of a series of users, it inter-

leaves them. With timesharing, productivity increases dramatically. Timesharing

systems provide facilities such as interactive database access and text editing.

However, timesharing requires a more complicated operating system than batch.

A timesharing system must provide each concurrent program with a secure ad-

dress space of its own; the system must switch rapidly between user contexts.

Timesharing is possible because of large, fast machines. With these machines, a

fraction of the computer's resources is enough to accomplish a single user's work.

This is the age of microprocessors|computers so cheap that their processor

cost has almost ceased to matter. Today, a few hundred dollars can purchase more

computational power than millions could buy in the 1950s. We are seeing the

beginning of the \personal computer" age, where every worker has a computer of

his or her own. These machines are usually connected by a network that provides

intermachine communication and shared data. In a sense, we are coming full

circle: The computer is no longer a shared device, but is being returned to the

individual user.

The trend toward cheaper, smaller, and faster machines continues. As fab-

rication techniques continue to improve, the single processor on a chip will give

way to a phalanx of processors on a chip and an army of interconnected chips. We

believe that the next generation of computer architectures will provide each user

with not just one but many computers|the megacomputer. However, improved

computational productivity is not achieved by processing power alone. Special

problems arise in coordinating systems of independent, asynchronous agents.

Along with multiple processor architectures must come the software facility to

exploit that computing power. A coordinated computing system successfully in-

tegrates multiple processing elements for problem solving. This book is a com-

pendium of ideas about the software issues involved in programming coordinated

computing systems.

Building a timesharing system is a di�cult task. Interleaving computations,

arranging to switch contexts between programs, and ensuring the security of each

individual process requires pro�cient engineering. Nevertheless, the problems of

timesharing are well understood. Creating a timesharing system is no longer a

research endeavor, but an engineering activity. We see the next intellectual step

in the development of computing systems as that of harnessing the power of the

megacomputer.

Coordinated Computing Systems

A coordinated computing system distributes the work of a single task among

many processing agents. Building a coordinated system is much harder than



preface xiii

constructing a timesharing computer. Coordinated computing is like timeshar-

ing in that we must arrange to do many activities simultaneously. However, un-

like timesharing, coordinated computing requires the ability to focus multiple,

simultaneous activities on a single goal.

How does coordinated computing di�er from conventional programming?

To understand the di�erences we must make several distinctions. We need

to distinguish processors and processes. A processor is a physical box that

computes|executes the instructions of a program, moves pulses of electricity

around wires, etc. Processors execute instructions. Processors use a �xed and

permanent storage.

A process is a logical processor. Like a conventional processor, a process

executes a program and possesses storage. Unlike a processor, a process is not

tied to any particular physical object. Analogically, a process is to a processor

as software is to hardware.*

Often systems associate several processes with a single processor. For exam-

ple, in timesharing systems each user (or user task) gets a process. The timeshar-

ing system tries to make that process appear to be running on its own (almost)

independent processor. Many of the systems that we describe in this book are

based on the synchronization of and communication among independent proc-

esses.

Though processes must have some independence, they should not become too

isolated. Processes must be able to communicate|to transfer information among

themselves. After all, coordinated problem solving requires communication. One

crucial dimension of communication is bandwidth|the amount of information

that communicators can exchange in a given time. We classify multiple processor

systems by their communications bandwidth. Systems that allow sharing of much

information are multiprocessors. Such systems can be thought of as providing

shared memory to their processes. We use the term shared memory to describe

this close information coupling because such systems are usually implemented by

sharing primary memory between the multiple processors. With shared memory,

communication is inexpensive.

Only a limited set of architectures provide inexpensive communication. More

generally, communication has its costs. Systems that incur higher communication

costs are distributed systems. In this book, we focus on software techniques for

controlling and exploiting distributed systems.

A �nal distinguishing attribute of coordinated computing is a requirement

for coherent problem solving. We are not interested in just getting computers

to communicate (the study of computer networks), nor are we interested in pro-

viding the software foundation for application program communication and syn-

chronization (the study of distributed operating systems). We want our processes

to cooperate in the partitioning and resolving of tasks. An appropriate technique

* Here we use \process" for what is conventionally called a \logical process" in operating

systems.



xiv preface

for the study of coordinated computing would be case studies of such systems.

Since distributed problem solving systems have not yet been built, we cannot

follow that path. Instead, in this book we take various proposals for the appropri-

ate organization of multiprocessor and distributed systems that have appeared

in the scienti�c literature and develop their themes. We emphasize the theoret-

ical organizing principles of these ideas instead of the engineering decisions of

particular implementations.

Building a coordinated computing system involves two primary activities:

constructing and connecting the system's hardware and programming the sys-

tem's software. This book is about software. Clearly, developing hardware is

crucial to building coordinated systems. Nevertheless (except for a few de�ni-

tions and pointers to the literature), we virtually ignore hardware. Instead, we

take the point of view that such physical systems will come into existence; the

technology to build inexpensive processors and to get them to communicate al-

ready exists. We are interested in the e�ective use of these emerging systems|

programs that can use a coordinated system as something more than a compli-

cated sequential processor. This book is an investigation of possible alternatives

for constructing coherent multiprocess systems.

Models, Languages, and Heuristics

We believe that building coordinated computing systems requires understanding

of three di�erent facets of system organization: models, languages, and heuristics.

Models capture the abstract relationships between the important compo-

nents of systems. To evaluate a system, one must know the parameters of its

construction: how long particular instructions take to execute, the e�ects of

speci�c statements, and so forth. Modeling is particularly important when con-

sidering emerging technologies. Such technologies need models both to guide the

system development process and to substitute for observations of system per-

formance. Models are used in system design, validation, and analysis. In Part 2

we discuss several models that apply to the problems of coordinated computing.

The usual way to give directions to a computer is with a program written in

some programming language. Coordinated systems need programming languages

that can describe concurrent activity and communication. Some of our expe-

riences with traditional programming systems are an impediment to designing

languages for coordinated systems. Traditional programs are executed sequen-

tially. Their control structures can specify only serial activities: \First, do this;

next, do that." The primary advantage of coordinated systems is the increased

processing power of concurrent computation. However, if system components are

to execute concurrently, then they must be able to determine the (potentially)

concurrent activities. In general, this can be done in one of two ways: either

(1) the programmer can indicate parallel actions with speci�c programming lan-

guage constructs, or (2) the system can infer opportunities for parallelism on

its own.



preface xv

The programs one writes reect the facilities of one's programming sys-

tem. Classical sequential programming languages (such as Pascal, Cobol, and

Lisp) are inadequate for programming coordinated systems. These languages

do not treat important problems such as concurrency, communication, syn-

chronization, security, and failure. In Part 3, we consider several di�erent lan-

guage proposals that address some of our requirements. These languages are

primarily distributed languages|concurrent languages that recognize the cost

of communication.*

Typically, models address the formal, mathematical understanding of sys-

tems, while programming languages mediate directions to a computer. Program-

ming languages have a complete syntax and semantics. Models usually express

only the simplest of relationships between a system's elements. The systems we

consider are usually describing the control of decentralized computer systems.

Hence, many systems blend elements of language and model, often taking the

form of a few additional concepts to be added to a standard language like Pascal

or Lisp.

Programming in sequential languages has taught us about sequential so-

lutions to problems. Coordinated systems provide the opportunity to program

concurrent solutions. However, except for the simplest cases, the exercising of

such concurrent power is an intellectually demanding task. This is especially true

when there are many active processes. Heuristics for coordinated computing are

ideas on the \organizational" or \social" architecture of coordinated systems|

techniques for getting processes to work together and for exploiting potential con-

currency. In Part 4 we discuss heuristic organizations for coordinated problem

solving systems.

Motivations for Coordinated Computing

This book promotes the idea of coordinated computing. Clearly, organizing a dis-

tributed, asynchronous system is harder than organizing one that is centralized

or synchronous. So why bother? There are two major motivations for studying

coordinated computing: economic and intellectual. On one hand, taming concur-

rent computation promises virtually cost-free processing. The massive amount

of computing cycles that a coordinated system will provide will make many

currently intractable computational problems solvable. (These include problems

drawn from domains such as large system simulation, database access, optimiza-

tion, and heuristic search.) On the other hand, organizing and understanding a

* We distinguish distributed languages and concurrent languages. Concurrent languages

assume concurrently executing processes. However, these processes share storage (can commu-

nicate cheaply). Concurrent programming languages are better understood, more speci�c, and,

in our opinion, less interesting than distributed languages. In Chapter 13 we discuss a concur-

rent programming language, Concurrent Pascal. We include this language for both historical

and pedagogical reasons. Concurrent programming languages are also called multiprocessing

languages.



xvi preface

set of independent agents is a challenging intellectual task. We �nd this combi-

nation of intellectual challenge and economic reward a compelling argument for

the relevance of studying coordinated computing.

Book Overview

Our original title for this book was \Models, Languages, and Heuristics for

Distributed Computing." In the course of our research, we came to the con-

clusion that there was some \whole" of distributed control greater than these

three parts. We chose to call that whole coordinated computing. Neverthe-

less, our book structure still reects our original triad. This book has �ve

parts: \Foundations," \Models," \Languages," \Heuristics," and \Contrasts and

Comparisons." The �rst part, Foundations, covers the minimal required back-

ground material and de�nitions. The next three parts survey proposed mod-

els (Part 2), languages (Part 3), and heuristic organizations (Part 4) for com-

putation that we feel bear on coordinated computing. We compare and con-

trast these models, languages, and heuristics in Part 5, presenting a taxonomy

of systems.

Having neither a general theory of coordinated computing nor a large pool

of implementation experience, we chose to approach the problem by discussing

relevant ideas from the computing literature. These ideas center on program-

ming languages. However, the discussion in the rest of the book touches on

many �elds besides programming languages (and mentions some programming

language concepts that may not be familiar to every reader). We therefore devote

the �rst four chapters to developing background material: Chapter 1, Computa-

tion Theory (automata theory, lambda calculus, and the analysis of algorithms);

Chapter 2, Programming Languages (syntax and semantics, and pragmatics);

Chapter 3, Concurrency (concurrency, resource conict, and synchronization);

and Chapter 4, Hardware. Our intention is that the reader only marginally ac-

quainted with a subject can, by reading the introductory section, learn all he or

she needs to know to understand the rest of the book.

The last chapter of Part 1, Chapter 5, forms the introduction to Parts 2, 3,

and 4. It outlines the nature of models, languages, and heuristics and touches

on some of the di�culties faced by concurrent and distributed systems. This

chapter introduces the dimensions of distribution by which we classify the various

systems.

Part 2 surveys models for coordinated computing. Each chapter (6 through

12) in that part describes a di�erent model (or a related set of models). For each,

we describe the model and present several examples of its use. Part 3 (Chapters

13 through 16) is a similar survey of programming languages.

Part 4 discusses heuristics for organizing coordinated computing systems.

Its �rst chapter, Chapter 17, discusses algorithms for distributed databases.

Its other chapter, Chapter 18, develops some of the more interesting ideas for

organizing distributed systems for coherent problem solving. Though much of



preface xvii

the work described in that chapter has its roots in arti�cial intelligence re-

search, no particular background in that �eld is needed to understand the

material.

Our �nal part, Part 5, contrasts and compares these systems, both in terms

of the dimensions outlined in Chapter 5, and when appropriate, by similar and

contrasting features. We conclude with a section discussing the characteristics of

basis and ideal systems.

We tried to write the chapters in Parts 2, 3, and 4 so that each is (by and

large) conceptually independent. While this independence is not complete, we

feel that readers will be able to read just those chapters that interest them. More

speci�cally, the reader interested in just one system [for example, Communicating

Sequential Processes (Chapter 10) or tasking in Ada (Chapter 14)] can skip to

that chapter; the reader who �nds a chapter too di�cult [as many not familiar

with the lambda calculus may �nd Concurrent Processes (Chapter 8)] can omit

that chapter at �rst reading.

Every chapter includes a few exercises. These exercises form three classes:

(1) brief mention exercises that draw the reader's attention to a tricky point in

one of the examples, (2) homework problems that request the straightforward

programming of a conventional problem in a new system, and (3) research ex-

ercises that describe a di�cult problem. Some of these exercises are suitable for

term projects; others are open research questions. Problems of this last type

are marked by a \y". Each chapter ends with a bibliography of relevant papers.

We have annotated those references when appropriate. There is a cumulative

bibliography at the end of the book.

Audience

We have tried to write this book so that it can be understood by someone ac-

quainted with the construction of programming languages|roughly the material

in a junior level course on programming languages. A reading knowledge of Pascal

(or the equivalent) is essential; a reading knowledge of Lisp is useful for under-

standing certain sections. The mathematical sophistication of the junior-level

computer science student is also required at times. We have tried to avoid de-

manding a greater background of the reader. However, this material ranges over

a wide territory|programming languages, operating systems, database systems,

arti�cial intelligence, complexity theory, and computational theory. We attempt

to explain, briey, each potentially unfamiliar idea and to provide references to

more complete descriptions. We urge the reader who �nds him or herself in a fa-

miliar section to skip to more challenging material. In particular, much of Part 1

will be familiar to many readers.

We anticipate two audiences for this material. The �rst is the academic

community. We use this book as the text in a graduate seminar on concepts

of programming languages and include some material (particularly exercises)

speci�cally for classroom use. The second audience is professional programmers.



xviii preface

We believe that coordinated computing will come to have profound economic

importance. We have searched the scienti�c literature for important ideas appli-

cable to coordinated computing and have expressed those ideas in an accessible

form. We hope that this volume proves to be a sourcebook of ideas for the people

who will actually develop coordinated computing systems.

Instructional use

We use this book as the text for a graduate seminar on advanced concepts of

programming languages at Indiana University. Our approach is �rst to develop

the concept and implementation of a process scheduler and then to introduce

concurrency. We proceed to discuss most of the systems, describing the material

in Part 1 as needed.

In that class, the term project is to implement the important semantic as-

pects of a distributed model or language. The students build their chosen lan-

guage or model in Scheme [Steele 78]. We use Scheme because its powerful core

and extensible nature make it well-suited for language design and implemen-

tation. Several Indiana University technical reports describe particular student

projects ([Wolynes 80, Dwyer 81]).

Most classes will not be able to cover the entire book in a single term. In

our opinion, every class should read this Preface, Chapter 5, and Chapter 19.

The instructor should select a representative set of the important systems, cov-

ering those systems and the material in Part 1 needed to understand them. For

example, one curriculum would include Shared Variables (Chapter 6), Exchange

Functions (Chapter 7), Communicating Sequential Processes (Chapter 10), Ac-

tors (Chapter 11), Ada (Chapter 14), PLITS (Chapter 15), and the heuristic

material in Part 4.

Structural Choices

In writing a book that covers such a broad territory we made many choices

about which material to include and how to present it. We know that some

of these choices will displease some people; clearly, we could have empha-

sized di�erent aspects of our subject or described it di�erently. We have

been driven by an interest in (1) the organizational requirements of coher-

ent distributed computing, and, more particularly, (2) the underlying run-time

structure of our various systems. We have deliberately avoided providing ei-

ther formal semantics or correctness proofs. Though such formality has its re-

search virtues, we feel that it would obscure the content of the book for most

readers.

Another choice we faced was whether to preserve the original languages of

the systems or to invent a new language, describing the systems in Parts 2, 3,

and 4 in that language. We chose (by and large) to keep the originals for

the following reasons: (1) By seeing the original language, the reader can



preface xix

get a sense of the real structure and pragmatics of each system; (2) The

reader who is familiar with the original can pursue that system in the lit-

erature without having to translate mentally to a new language. We made

exceptions to this rule when the original model did not have a language,

the full language was too obscure, or the particular language was undergo-

ing rapid revision. In all such cases we invented an appropriate syntax to de-

scribe the system. One of our current research interests is a tractable univer-

sal language that can adequately describe the operational behavior of all these

systems.

We use several examples in the description of each system. We might have

selected a common example (or set of examples) to be used throughout the

book. Instead, we vary the examples but use some repeatedly. We made this

decision because the systems cover a wide range of facilities; an interesting

example for a model is often too low-level an example for a programming

language, while an interesting program is often far too complicated to ex-

press in most models. Instead, we have a common set of base examples and

use some of these examples (and some others) in each section. Since most of

these systems are theoretical, we have not been able to debug the programs on

implementations.

Our apologies go to those system designers whose systems have been omitted.

We have not been trying to write an encyclopedia of distributed systems. Instead,

we selected those systems we feel are representative or important and described

them in depth. This has, of course, meant that many systems have been left out.

Some of these systems are briey described in the bibliographic annotations of

the appropriate chapters.

Acknowledgments

The help of many individuals and organizations has been important in complet-

ing this book. We thank Greg Andrews, David Bein, Gary Brooks, Jim Burns,

Will Clinger, Gray Clossman, Dan Corkill, Jack Dennis, Scot Drysdale, Jerry

Feldman, David Gries, Cordy Hall, Chris Haynes, Carl Hewitt, Tony Hoare, Eu-

gene Kohlbecker, Steve Johnson, John Lamping, Bob Leichner, Egon Loebner,

Barbara Liskov, John Lowrance, Nancy Lynch, George Milne, Robin Milner,

Fanya Montalvo, John Nienart, Ed Robertson, Vlad Rutenberg, Rich Salter,

Bob Scheier, Avi Silberschatz, Mitch Wand, Peter Wegner, David Wise, and

Pam Zave for discussions and comments. We would particularly like to thank

Steve Muchnick and Peter Thiesen for their comprehensive comments. This

book is much easier to understand and more accurate for the help of these

people.

A paper by David MacQueen [MacQueen 79] originally inspired our interest

in the subject of distributed models and languages. This interest led to our teach-

ing a seminar. The ideas of that seminar evolved into the concept of coordinated

computing and this book.



xx preface

Several people and organizations have allowed us to quote or adapt their

previously-published material. We would like to thank:

Prentice-Hall for permission to adapt Figure 4-1 from Figure 1-5, p. 11 of Computer

Networks by Andrew S. Tanenbaum, Copyright 1981. Adapted by permission of Prentice-

Hall, Inc. Englewood Cli�s, N.J.

Prentice-Hall for permission to adapt Figure 9-6 from Petri Net Theory and the

Modeling of Systems, by James L. Peterson, p. 67, Copyright 1981. Adapted by permission

of Prentice-Hall, Inc. Englewood Cli�s, N.J.

Jack Dennis and Springer-Verlag for permission to adapt Figures 9-8 through 9-14

and 9-16 from Figures 1 through 5 of the article \First Version of a Data Flow Language,"

by Jack Dennis in Proceedings, Colloque sur la Programmation, B. Robinet, ed., Lecture

Notes in Computer Science vol. 19, Copyright 1974, Springer-Verlag.

The ACM for permission to adapt Figures 8-1 through 8-5 and 8-9 from the article

\Concurrent Processes and Their Syntax," by George Milne and Robin Milner, JACM,

vol. 26, no 2, April 1979, Copyright 1979, Association for Computing Machinery, Inc.,

reprinted by permission.

Steven D. Johnson for permission to adapt Figures 12-5 and 12-11 from Circuits

and Systems: Implementing Communication with Streams, TR 116, Computer Science

Department, Indiana University.

Springer-Verlag for permission to adapt Figures 12-6 through 12-10 from Figures 8

and 10 of the article \An Approach to Fair Applicative Multiprogramming" by Daniel

P. Friedman and David S. Wise in The Proceedings of the International Symposium of

Concurrent Computation, Gilles Kahn, ed., Lecture Notes in Computer Science vol. 70,

Copyright 1979, Springer-Verlag.

Daniel Corkill for permission to reprint the quote in Exercise 18-1 from Cooperative

Distributed Problem Solving: A New Approach for Structuring Distributed Systems, by

Victor Lesser and Daniel Corkill, TR 78-7, Department of Computer and Information

Science, University of Massachusetts, May, 1978.

The ACM for permission to reprint the quote in Chapter 19 from \High level pro-

gramming for distributed computing," by Jerome Feldman, Communications of the ACM,

vol. 22, no. 6 (June 1979), Copyright 1979, Association for Computing Machinery, Inc,

reprinted by permission.

We thank the Computer Science Department of Indiana University and the

Computer Research Center of Hewlett-Packard Laboratories for their support

and the use of their facilities. We also thank the National Science Foundation

for its support over the years, and Charles Smith and the System Development

Foundation for support for a California visit to complete this project.

Myrna Filman, Kim Fletcher, Peg Fletcher, and Nancy Garrett have pro-

vided administrative, organizational, and artistic help. The output of a program

by John Lamping was the basis of the jacket design. We typeset this book at

Stanford University using Don Knuth's TEX system. The expertise of Bob Bal-

lance, David Fuchs, and Rich Pattis greatly facilitated the typesetting process.

They all have our gratitude.

And �nally, our love and thanks to our wives, Myrna Filman and Mary

Friedman, whose emotional support and understanding were crucial for a project

of this magnitude.

Robert E. Filman

Daniel P. Friedman


